Micro Diaphragm Gas Sampling Pumps

NMP 830 KNDC NMP 830 KNDC-B NMP 830 KNE
NMP 830 KVDC NMP 830 KVDC-B NMP 830 KVE
NMP 830 KTDC NMP 830 KTDC-B NMP 830 KTE
NMP 850 KNDC NMP 850 KNDC-B
NMP 850 KTDC NMP 850 KTDC-B
NMP 850.1.2 KNDC-B

Operating and Installation Instructions

Read and observe these Operating and Installation Instructions!

KNF Micro AG
Zelglimatte 1b
CH-6260 Reiden
Switzerland
Phone 0041(0)62 787 88 88
Fax 0041(0)62 787 88 99
E-mail: info@knf-micro.ch
www.knf-micro.ch

Contents

1. About this document ... 2
2. Use ... 3
3. Safety ... 4
4. Technical Data ... 6
5. Design and function ... 9
6. Installation and connection ... 10
7. Operation .. 13
8. Servicing ... 14
9. Troubleshooting ... 18
10. Returns ... 20
11. Health and safety clearance and decontamination form 21

Keep for future use!
1. About this document

1.1. Using the Operating and Installation Instructions

The Operating and Installation Instructions are part of the pump.

➤ Pass on the Operating and Installation Instructions to the next owner.

Project pumps

Customer-specific project pumps (pump models which begin with "PJ" or "PM") may differ from the Operating and Installation Instructions.

➤ For project pumps, also observe the agreed upon specifications.

1.2. Symbols and markings

Warning

A danger warning is located here.

Possible consequences of a failure to observe the warning are specified here. The signal word, e.g. Warning, indicates the danger level.

➤ Measures for avoiding the danger and its consequences are specified here.

<table>
<thead>
<tr>
<th>Danger levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal word</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>DANGER</td>
</tr>
<tr>
<td>WARNING</td>
</tr>
<tr>
<td>CAUTION</td>
</tr>
</tbody>
</table>

Tab. 1

Other information and symbols

➤ An activity to be carried out (a step) is specified here.

1. The first step of an activity to be carried out is specified here. Additional, consecutively numbered steps follow.

This symbol refers to important information.
2. Use

2.1. Proper use

The pumps are exclusively intended for transferring gases.

Owner's responsibility

Only install and operate the pumps under the operating parameters and conditions described in Chapter 4, Technical data.

Only complete pumps may be taken into service.

Make sure that the installation location is dry and the pump is protected against rain, splash, hose and drip water.

Before using a medium, check whether the medium can be transferred danger-free in the specific application case.

Before using a medium, check the compatibility of the materials of the pump head, pump housing, diaphragms, and valves with the medium.

Only transfer gases which remain stable under the pressures and temperatures occurring in the pump.

2.2. Improper use

The pumps may not be operated in an explosive atmosphere.

The pumps are not suitable for transferring dusts.

The pumps are not suitable for transferring vapors and liquids.

The pumps must not be used to create vacuum and overpressure simultaneously.

An overpressure must not be applied to the suction side of the pump.
3. Safety

Note the safety precautions in Chapters 6. Installation and connection, and 7. Operation.

The pumps are built according to the generally recognized rules of technology and in accordance with the occupational safety and accident prevention regulations. Nevertheless, dangers can result during their use which lead to injuries to the user or others, or to damage to the pump or other property.

Only use the pumps when they are in a good technical and proper working order, in accordance with their intended use, observing the safety advice within the Operating and Installation Instructions, at all times.

Personnel

Make sure that only trained and instructed personnel or specially trained personnel work on the pumps. This especially applies to assembly, connection and servicing work.

Make sure that the personnel has read and understood the Operating and Installation Instructions, and in particular the “Safety” chapter.

Working in a safety-conscious manner

Observe the accident prevention and safety regulations when performing any work on the pump and during operation.

Handling dangerous media

When transferring dangerous media, observe the safety regulations when handling these media.

Handling combustible media

Be aware that the pumps are not designed to be explosion-proof.

Make sure the temperature of the medium is always sufficiently below the ignition temperature of the medium, to avoid ignition or explosion. This also applies for unusual operational situations.

Note that the temperature of the medium increases when the pump compresses the medium.

Hence, make sure the temperature of the medium is sufficiently below the ignition temperature of the medium, even when it is compressed to the maximum permissible operating pressure of the pump.

If necessary, consider any external sources of energy, such as radiation, that may add heat to the medium.

In case of doubt, consult the KNF customer service.

Environmental protection

Store all replacement parts in a protected manner and dispose of them properly in accordance with the applicable environmental protection regulations. Observe the respective national and international regulations. This especially applies to parts contaminated with toxic substances.

EC Directives / Standards

For the purposes of the Machinery Directive 2006/42/EC, pumps are “partly completed machinery,” and are therefore to be regarded as not ready for use. Partly completed machinery may not be commissioned until such time as it has been determined that the machine in which the partly completed machinery is to be assembled is in conformity with the provisions of the Machinery Directive 2006/42/EC. The following essential requirements of
Annex I of Directive 2006/42/EC (general principles) are applied and observed:

- General Principles No. 1
- No. 1.1.2. / 1.1.3. / 1.3.1. / 1.3.4. / 1.4.1. / 1.5.1.* / 1.5.2.* / 1.5.8. / 1.5.9. / 1.7.4. / 1.7.4.1. / 1.7.4.3.
 (* only for pump type NMP 830 K_E)

As these partly completed machinery are OEM-models the power supplies and the equipment for disconnecting and switching-off the partly completed machinery respectively have to be considered when mounting as well as over-current and overload protective gear.

In addition a protection against mechanical parts in motion and hot parts, if existing, has to be provided when mounting.

The pumps conform to the Directive 2011/65/EU (RoHS2).

The following harmonized standards have been used:

<table>
<thead>
<tr>
<th>NMP 830 K_E</th>
<th>NMP 830 K_DC</th>
<th>NMP 830 K_DCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 55014-1/2</td>
<td>DIN EN 55014-1/2</td>
<td>DIN EN 55014-1</td>
</tr>
<tr>
<td>DIN EN 61000-3-2/3</td>
<td>DIN EN 60034-1</td>
<td>DIN EN 61000-6-2</td>
</tr>
<tr>
<td>DIN EN 60335-1</td>
<td>DIN EN 61000-6-1/2</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2

Customer service and repairs

Only have repairs to the pumps carried out by the KNF Customer Service responsible.
4. Technical Data

Pump materials

NMP 830 KNDC, NMP 830 KNDC-B
NMP 850 KNDC, NMP 850 KNDC-B, NMP850.1.2 KNDC-B
NMP 830 KNE

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head plate; intermediate plate</td>
<td>PPS</td>
</tr>
<tr>
<td>Housing</td>
<td>PA-GF50</td>
</tr>
<tr>
<td>Valve plate</td>
<td>CR</td>
</tr>
<tr>
<td>O-ring</td>
<td>NBR</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>EPDM</td>
</tr>
</tbody>
</table>

Tab. 3

NMP 830 KVDC
NMP 830 KVDC-B
NMP 830 KVE

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head plate; intermediate plate</td>
<td>PPS</td>
</tr>
<tr>
<td>Housing</td>
<td>PA-GF50</td>
</tr>
<tr>
<td>Valve plate</td>
<td>FPM</td>
</tr>
<tr>
<td>O-ring</td>
<td>FPM</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>FPM</td>
</tr>
</tbody>
</table>

Tab. 4

NMP 830 KTDC, NMP 830 KTDC-B
NMP 850 KTDC, NMP 850 KTDC-B
NMP 850 KTE

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head plate; intermediate plate</td>
<td>PPS</td>
</tr>
<tr>
<td>Housing</td>
<td>PA-GF50</td>
</tr>
<tr>
<td>Valve plate</td>
<td>FPM</td>
</tr>
<tr>
<td>O-ring</td>
<td>FPM</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>PTFE coated</td>
</tr>
</tbody>
</table>

Tab. 5
Pneumatic values

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Delivery rate at atm. pressure [l/min]</th>
<th>Max. permissible operating pressure [bar g]</th>
<th>Ultimate vacuum [mbar abs.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMP 830 KNE</td>
<td>1.8</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>NMP 830 KVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMP 830 KTE</td>
<td>1.6</td>
<td>1</td>
<td>310</td>
</tr>
<tr>
<td>NMP 830 KNDC</td>
<td>3.1</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>NMP 830 KVDC</td>
<td>2.7</td>
<td>1</td>
<td>350</td>
</tr>
<tr>
<td>NMP 830 KTDC</td>
<td>2.6</td>
<td>1.4</td>
<td>240</td>
</tr>
<tr>
<td>NMP 830 KNDC-B</td>
<td>2.5</td>
<td>1.4</td>
<td>240</td>
</tr>
<tr>
<td>NMP 830 KVDC-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMP 830 KTDC-B</td>
<td>2.1</td>
<td>1.3</td>
<td>330</td>
</tr>
<tr>
<td>NMP 850 KNDC</td>
<td>4.5</td>
<td>1.5</td>
<td>230</td>
</tr>
<tr>
<td>NMP 850 KTDC</td>
<td>3.9</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>NMP 850 KNDC-B</td>
<td>4.2</td>
<td>1.5</td>
<td>230</td>
</tr>
<tr>
<td>NMP 850 KVDC-B</td>
<td>3.5</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>NMP 850.1.2 KNDC-B</td>
<td>8</td>
<td></td>
<td>230</td>
</tr>
</tbody>
</table>

* Liters in standard state (1,013 mbar)

Electrical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical data</td>
<td>See type plate</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [L x W x H]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMP 830 E</td>
<td>approx. 98 x 56 x 66</td>
</tr>
<tr>
<td>NMP 830 DC</td>
<td>approx. 76 x 30.5 x 51</td>
</tr>
<tr>
<td>NMP 830 DC-B</td>
<td>approx. 63.5 x 54 x 66</td>
</tr>
<tr>
<td>NMP 850 DC</td>
<td>approx. 80.5 x 38 x 54</td>
</tr>
<tr>
<td>NMP 850 DC-B</td>
<td>approx. 76.5 x 54 x 69.5</td>
</tr>
<tr>
<td>NMP 850.1.2 DC-B</td>
<td>approx. 143 x 76 x 59</td>
</tr>
</tbody>
</table>

Weight

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMP 830 E</td>
<td>approx. 0.590</td>
</tr>
<tr>
<td>NMP 830 DC</td>
<td>approx. 0.195</td>
</tr>
<tr>
<td>NMP 830 DC-B</td>
<td>approx. 0.270</td>
</tr>
<tr>
<td>NMP 850 DC</td>
<td>approx. 0.210</td>
</tr>
<tr>
<td>NMP 850 DC-B</td>
<td>approx. 0.360</td>
</tr>
<tr>
<td>NMP 850.1.2 DC-B</td>
<td>approx. 0.430</td>
</tr>
</tbody>
</table>
Other parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic connections NMP 830</td>
<td>For tube ID 4 mm</td>
</tr>
<tr>
<td>Pneumatic connections NMP 850</td>
<td>For tube ID 5 mm</td>
</tr>
<tr>
<td>Pneumatic connections NMP 850.1.2</td>
<td>For tube ID 4 mm</td>
</tr>
<tr>
<td>Permissible ambient temperature</td>
<td>+ 5 °C to + 40 °C</td>
</tr>
<tr>
<td>Permissible media temperature</td>
<td>+ 5 °C to + 40 °C</td>
</tr>
<tr>
<td>Maximum permissible ambient relative humidity</td>
<td>80 % for temperatures up to 31 °C, decreasing linearly to 50 % at 40 °C</td>
</tr>
<tr>
<td>Max. altitude of site [m above sea level]</td>
<td>2000</td>
</tr>
</tbody>
</table>

Tab. 10
5. Design and function

Design

![Diagram of Diaphragm Pump NMP 830 DC]

Fig. 1: Diaphragm pump NMP 830 DC

Function

![Diagram of Pump Head]

Fig. 2: Pump head

The pumps transfer, compress and evacuate gases.

The elastic diaphragm (4) is moved up and down by the eccentric (5) and the connecting rod (6). In the downward stroke it aspirates the gas to be transferred via the inlet valve (2). In the upward stroke, the diaphragm presses the medium out of the pump head via the outlet valve (1). The transfer chamber (3) is hermetically separated from the pump drive (7) by the diaphragm.
6. Installation and connection

Only install and operate the pumps under the operating parameters and conditions described in Chapter 4, Technical data.

Observe the safety precautions (see Chapter 3).

6.1. Installation of the pump

- Before installation, store the pump at the installation location to bring it up to ambient temperature.

- See the data sheet for the mounting dimensions.

- Make sure that the installation location is dry and the pump is protected against rain, splash, hose and drip water.

- Install the pump at the highest point in the system to prevent condensate from collecting in the pump head.

- Choose a safe location (flat surface) for the pump.

- Protect the pump from dust.

- Protect the pump from vibrations and jolts.

6.2. Electrical connection

- Only have the pump connected by an authorized specialist.

- Only have the pump connected when the power supply is disconnected.

- In the electrical installation, arrangements (complying with EN 60335-1) must be made for disconnecting the pump motor from the electrical supply.

Connecting pump

1. Compare the supply data with the data on the motor-plate. For operating current see type plate.

 The voltage must not vary by more than +10% and -10% from that shown on the type-plate.

 The earth (ground) wire must be connected to the motor (not necessary on dc motors up to 24V).

2. Connect the earth (ground) wire to the motor (not necessary on dc motors up to 24V).

3. Connect the positive and negative pole.

 Note the proper polarity (see marking on the motor). Incorrect lead connection will damage electronics of brushless dc motors (type designation ending with B).

 Correct connection:

 + red cable
 - black cable
EMC-compatible Installation

a) DC motor (brushed)

The Tests:
- Magnetic field with energy-technical frequency
- Electromagnetic HF field, amplitude-modulated
- Electromagnetic HF field, pulse-modulated
- Discharging of static electricity
- High frequency, asymmetric
- Fast transients

were not carried out, cause the products do not contain electronic modules, which can be affected by these tests.

The Surge-test can only be passed with additional means, or is not mandatory, if: From EN61000-6-1 technical norm for EMC protection, part 1,10 test demands for EMC protection, table 3, EMC protection, D.C.- power in- and outputs. Remark 3: (quotation) Not to be used with input connections which are foreseen for a connection with a battery or a rechargeable battery which has to be removed or disconnected from the device for the recharge.

Devices with a D.C. power input which are foreseen to be operated with an A.C. / D.C. converter have to be tested at an A.C. power input of an A.C. / D.C. converter fixed by the manufacturer. In case the converter was not fixed they have to be tested at an A.C. power input of a typical (usual) A.C. / D.C. converter.

The test is applicable for D C power inputs which are foreseen for a permanent connection to cables which are longer than 10 m.

b) DC motor (brushless)

In order to remove the electrical interference according to EN 55014-1:1993 + A1:1997 all pumps with brushless DC motor (DC-B) must be equipped with an additional electronic circuit. This electronic circuit has to be installed as close to the motor as possible.

The additional circuitry is not necessary if a voltage supply has a suppression of > 20 dB at 150 kHz and 0 dB at 1 MHz.

The supplemental circuit must be structured according to the following electrical diagram and the components defined therein in order to achieve the required level of suppression.
C1: Capacitor 1 µF
C2: Capacitor 1000 µF
L1: Choke coil 6 µH

Fig. 3: Electrical diagram of the supplemental circuit

6.3. Pneumatic connection

- Only connect components to the pump which are designed for the pneumatic data of the pump (see Chapter 4, Technical data).
- If the pump is used as a vacuum pump, safely discharge the pump exhaust at the pump’s pneumatic outlet.

Connecting pump

- A marking on the pump head shows the direction of flow.
- Remove the protective plugs from the hose connectors.
- Connect the suction line and pressure line.
- Lay the suction and pressure line at a downward angle to prevent condensate from running into the pump.
7. Operation

Only operate the pumps under the operating parameters and conditions described in Chapter 4, Technical data.

Make sure the pumps are used properly (see Chapter 2.1).

Make sure the pumps are not used improperly (see Chapter 2.2).

Observe the safety precautions (see Chapter 3).

<table>
<thead>
<tr>
<th>WARNUNG</th>
<th>Hazard of the pump head bursting due to excessive pressure increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔</td>
<td>Do not exceed max. permissible operating pressure (see Chapter 4, Technical data).</td>
</tr>
<tr>
<td>➔</td>
<td>Monitor pressure during operation.</td>
</tr>
<tr>
<td>➔</td>
<td>If the pressure exceeds the maximum permissible operating pressure, immediately switch off pump and eliminate fault (see Chapter 8, Troubleshooting).</td>
</tr>
<tr>
<td>➔</td>
<td>Only throttle or regulate the air or gas quantity in the suction line to prevent the maximum permissible operating pressure from being exceeded.</td>
</tr>
<tr>
<td>➔</td>
<td>If the air or gas quantity in the pressure line is throttled or regulated, make sure that the maximum permissible operating pressure is not exceeded.</td>
</tr>
</tbody>
</table>

Excessive pressure (with all of the related hazards) can be prevented by placing a bypass line with a pressure-relief valve between the pressure and suction sides of the pump. For further information, contact our technical adviser (see front page for telephone number).

Pump standstill ➔ With the pump at a standstill, open pressure vacuum and suction lines to normal atmospheric pressure.

Switching pump on ➔ The pump may not start up against pressure or vacuum during switch-on. This also applies in operation following a brief power failure.

 ➔ Make sure that normal atmospheric pressure is present in the lines during switch-on.

Inspection ➔ Regularly inspect the pump for external damage or leaks. Diaphragm and valve plate(s) are the only parts subject to wear. Wear is usually indicated by a drastic reduction in the pneumatic performance. When replacing parts proceed as described in Chapter 8.
8. Servicing

Before working on the pump, isolate the power supply securely, then check that the lines are not live.

Always change valve plate(s), diaphragm, and O-rings (if existing) at the same time.

8.1. NMP 830

<table>
<thead>
<tr>
<th>Part</th>
<th>Order-No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Diaphragm</td>
<td>045742</td>
</tr>
<tr>
<td>2 Valve plates</td>
<td>125973</td>
</tr>
<tr>
<td>2 O-Rings</td>
<td>023544</td>
</tr>
</tbody>
</table>

Tab. 11: Parts

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torx screwdriver, Torx 10 IP</td>
<td></td>
</tr>
<tr>
<td>Pencil</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 12: Tools

Fig. 4: Pump head NMP 830K_

See fig. 4.

1. Mark the position of head parts relative to each other by a drawing line with a pencil. This helps to avoid incorrect assembly later.

2. Undo the four screws (1) in the head.

3. Lift the head plate (2) and the intermediate plate (5) complete with valve plates (3) and O-rings (4) off the housing.

4. Hold the pump with one hand, so that the diaphragm is pointing downwards. Lift the diaphragm (6) by the opposing side edges, grasp it and unscrew it in the counter-clockwise direction.
5. Take the diaphragm spacers (7) off the threaded portion of the diaphragm and put them on the threaded portion of the new diaphragm.

6. Move the connecting rod to the upper point.

7. Screw the new diaphragm (6) with spacers (7) clockwise onto the connection rod and tighten hand-tight.

8. Place the intermediate plate (5) on the housing, in the position indicated by the drawing line.

9. Exchange both valve plates (3) and both O-rings (4). The valve plates for pressure and suction sides are identical, as are upper and lower sides of the plates.

10. Place the head plate (2) on the intermediate plate (5), in the position indicated by the drawing line; gently tighten the four screws (1) evenly and diagonally (if a torque screwdriver is available: torque about 0.30 Nm).

11. Let the pump run.
8.2. NMP 850

<table>
<thead>
<tr>
<th>Type range</th>
<th>Parts</th>
<th>Order-No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMP 850 KN_</td>
<td>1 Diaphragm</td>
<td>059783</td>
</tr>
<tr>
<td></td>
<td>1 Valve plate</td>
<td>059785</td>
</tr>
<tr>
<td>NMP 850.1.2 KND</td>
<td>2 Diaphragms</td>
<td>059783</td>
</tr>
<tr>
<td></td>
<td>2 Valve plates</td>
<td>059785</td>
</tr>
<tr>
<td>NMP 850 KT_</td>
<td>1 Diaphragm</td>
<td>059784</td>
</tr>
<tr>
<td></td>
<td>1 Valve plate</td>
<td>059786</td>
</tr>
</tbody>
</table>

Tab. 13: Parts

Tools required

<table>
<thead>
<tr>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips screwdriver No. 1</td>
</tr>
<tr>
<td>Pencil</td>
</tr>
</tbody>
</table>

Tab. 14: Tools

See fig. 5.

For pump NMP 850.1.2 KND CB:

To avoid opening the pneumatic connection between the pump heads service the pump as described below with the following addition: Make steps 1 to 3 and 11 for both pump heads together.

1. Mark the position of head parts relative to each other by a drawing line with a pencil. This helps avoid incorrect assembly later.

2. Undo the four screws (1) in the head.

3. Lift the head plate (2) and the intermediate plate (4) off the housing.

4. Hold the pump with one hand, so that the diaphragm is pointing downwards. Lift the diaphragm (5) by the opposing side edges, grasp it and unscrew it in the counter-clockwise direction.

5. Remove connection rod disc (6) and diaphragm spacers (7) from the threaded pin of the diaphragm.

6. Push the connection rod disc (6) and the diaphragm spacers (7) in this order onto the threaded pin of the new diaphragm.

7. Move the connecting rod to the upper point.
8. Screw the new diaphragm (5) with connection rod disc (6) and spacers (7) clockwise onto the connection rod and tighten hand-tight.

9. Place the intermediate plate (4) on housing, in the position indicated by the drawing line.

10. Place the new valve plate (3) on the intermediate plate (4).

11. Place the head plate (2) on the intermediate plate (4), in the position indicated by the drawing line; gently tighten the four screws (1), evenly and diagonally (if a torque screwdriver is available: torque about 0.30 Nm).

12. Let the pump run.
9. Troubleshooting

- Disconnect the pump power supply before working on the pump.
- Make sure the pump is deenergized and secure.

Check the pump (see Tab. 15 and 16).

<table>
<thead>
<tr>
<th>Cause</th>
<th>Fault remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections or lines blocked.</td>
<td>➔ Check connections and lines.</td>
</tr>
<tr>
<td></td>
<td>➔ Remove blockage.</td>
</tr>
<tr>
<td>External valve is closed or</td>
<td>➔ Check external valves and filters.</td>
</tr>
<tr>
<td>filter is clogged.</td>
<td></td>
</tr>
<tr>
<td>Condensate has collected in</td>
<td>➔ Install pump at highest point in system.</td>
</tr>
<tr>
<td>pump head.</td>
<td></td>
</tr>
<tr>
<td>Diaphragm or valve plates are worn.</td>
<td>➔ Replace pump.</td>
</tr>
</tbody>
</table>

Tab. 15

<table>
<thead>
<tr>
<th>Cause</th>
<th>Fault remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensate has collected in pump head.</td>
<td>➔ Install pump at highest point in system.</td>
</tr>
<tr>
<td>There is gauge pressure on pressure side and at the same time vacuum or a pressure above atmospheric pressure on suction side.</td>
<td>➔ Change the pressure conditions.</td>
</tr>
<tr>
<td>Pneumatic lines or connection parts have an insufficient cross section.</td>
<td>➔ Disconnect pump from system to determine output values. ➔ Eliminate throttling (e.g. valve) if necessary. ➔ Use lines or connection parts with larger cross section if necessary.</td>
</tr>
<tr>
<td>Leaks occur on connections, lines or pump head.</td>
<td>➔ Eliminate leaks.</td>
</tr>
<tr>
<td>Connections or lines completely or partially jammed.</td>
<td>➔ Check connections and lines.</td>
</tr>
<tr>
<td></td>
<td>➔ Remove the jamming parts and particles.</td>
</tr>
<tr>
<td>Head parts are soiled.</td>
<td>➔ Clean head components.</td>
</tr>
<tr>
<td>Diaphragm or valve plates are worn.</td>
<td>➔ Change diaphragm or valve plates (see Chapter 8 Servicing).</td>
</tr>
</tbody>
</table>

Tab. 16

Fault cannot be rectified

If you are unable to determine any of the specified causes, send the pump to KNF Customer Service (see last page for the address).

1. Flush the pump to free the pump head of dangerous or aggressive gases.
2. Remove the pump
3. Clean the pump
4. Send the pump, together with completed Health and Safety Clearance and Decontamination Form (Chapter 11), to KNF stating the nature of the transferred medium.
10. Returns

Pumps and systems used in laboratories and process-based industries are exposed to a wide variety of conditions. This means that the components contacting pumped media could become contaminated by toxic, radioactive, or otherwise hazardous substances.

For this reason, customers who send any pumps or systems back to KNF must submit a Health and safety clearance and decontamination form in order to avoid a hazardous situation for KNF employees. This Health and safety clearance and decontamination form provides the following information, among other things:

- physiological safety
- whether medium-contacting parts have been cleaned
- whether the equipment has been decontaminated
- media that have been pumped or used

and must declare physiological safety. To ensure worker safety, work may not be started on pumps or systems without a signed Health and safety clearance and decontamination form.

For optimal processing of a return, a copy of this declaration should be sent in advance via e-mail, regular mail, or fax to KNF Customer Service (refer to final page for address). In order to avoid endangering employees who open the shipment's packaging, despite any residual hazards, the original version of the Health and safety clearance and decontamination form must accompany the delivery receipt on the outside of the packing.

The template for the Health and safety clearance and decontamination form is included with these operating instructions and may also be downloaded from the KNF website.

The customer must specify the device type(s) and serial number(s) in the Health and safety clearance and decontamination form in order to provide for the unambiguous assignment of the Declaration to the device that is sent to KNF.

In addition to the customer's declaration of physiological safety, information about operating conditions and the customer's application are also of importance to ensure that the return shipment is handled appropriately. Therefore, the Health and safety clearance and decontamination form requests this information as well.
11. Health and safety clearance and decontamination form

Health and safety clearance and decontamination form

This declaration must be present and complete (the original must accompany the shipment’s delivery receipt) before the returned device can be examined.

Device type: ..

Serial number(s): ...

...

Reason for returning the device (please describe in detail):

(The device(s) was(were) in operation ☐ yes ☐ no)

...

...

...

...

...

We confirm that the above device(s)

☐ has(have) pumped exclusively physiologically unobjectionable media and that it(they) are free of hazardous materials and any materials that are harmful to health.

☐ The device(s) was(were) cleaned ☐ yes ☐ no

☐ has(have) pumped media of the following category(categories) which are not physiologically unobjectionable and that cleaning of the device(s) (potentially only media-contacting parts) is required.

☐ aggressive ...

☐ biological ...

☐ radioactive ..

☐ toxic ..

☐ other ...

The device(s) was(were) decontaminated and work can proceed without special measures ☐ yes

Method / proof: ...

...

...

The device(s) was(were) not decontaminated and special measures are required before starting work ☐ yes

Measures: ...

...

...

Legally binding declaration

We herewith affirm that the information provided in this form is correct and complete. Shipment of the devices and components is in compliance with statutory regulations.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Company (stamp) Date Name Authorized signature Position
KNF worldwide

Benelux
Netherlands
KNF Verder B.V.
Utrechtseweg 4a
NL-3451 GG Vleuten
Tel. 0031 (0)30 677 92 40
Fax 0031 (0)30 677 92 47
E-mail: info@knf-verder.nl
www.knf-verder.nl

Benelux
Belgium, Luxembourg
KNF Verder N.V.
Kontichsesteenweg 17
B-2630 Aartselaar
Tel. 0032 (0)3 8719624
Fax 0032 (0)3 8719628
E-mail: info@knf.be
www.knf.be

China
KNF Neuberger Trading
(Shanghai) Co., Ltd
No. 36 Lane 1000
Zhang Heng Road
Shanghai 201203, P.R. China
Tel. 0086 (0)21 685 965 66
Fax 0086 (0)21 339 006 26
E-mail: info@knf.com.cn
www.knf.com.cn

Germany
KNF Neuberger GmbH
Alter Weg 3
D-79112 Freiburg
Tel. 0049 (0)7664 5909-0
Fax 0049 (0)7664 5909-99
E-mail: info@knf.de
www.knf.de

France, Morocco,
Algeria
KNF Neuberger SAS
4, Blvd. d’Alsace Z.I.
F-68128 Village-Neuf
Tel. 0033 (0)389 70 35 00
Fax 0033 (0)389 69 92 52
E-mail: info@knf.fr
www.knf.fr

Great Britain
KNF Neuberger U.K. Ltd.
Avenue 2
Station Lane
Industrial Estate
Witney Oxon OX28 4FA
Tel. 0044 (0)1993 77 83 73
Fax 0044 (0)1993 77 51 48
E-mail: info@knf.co.uk
www.knf.co.uk

India
KNF Pumps + Systems
(India) Pvt. Ltd.
RAJIV GANDHI INFOTECH PARK
Phase 1
Ganga Estate, Survey No. 152/2/2
Above AXIS BANK
Pune 411 057
Tel. 0091 (0)20 640 13 923
0091 (0)20 640 08 923
Fax 0091 (0)20 229 33 923
E-mail: info@knf.pumps.in
www.knf.pumps.in

Italy
KNF ITALIA S.r.l.
Via Flumendosa, 10
i-20132 Milano
Tel. 0039 02 27 20 38 60
Fax 0039 02 27 20 38 48
E-mail: info@knf.it
www.knf.it

Japan
KNF Japan Co.Ltd.
Across Shinkawa Bldg. Annex 3F
1-16-14 Shinkawa, Chuo-ku,
Tokyo, Japan 104-0033
Tel. 0081 (0)3 3551-7931
Fax 0081 (0)3 3551-7932
E-mail: info@knf.co.jp
www.knf.co.jp

Korea
KNF Neuberger Ltd.
Woosan Bldg.RM#202,
336-4, Hwiyung-Dong
Dongdaemun-Ku.,
130-090, Seoul
Tel. 0082 (0)2 959-0255/6
Fax 0082 (0)2 959-0254
E-mail: knf@knfkorea.com
www.knfkorea.com

Sweden, Denmark,
Finland, Norway
KNF Neuberger AB
Mejerivägen 4,
P.O. Box 44060
SE-10073 Stockholm
Tel. 0046 (0) 87445113
Fax 0046 (0) 87445117
E-mail: info@knf.se
www.knf.se

Switzerland
Sales
KNF Neuberger AG
Stockenstrasse 6
CH-6362 Balzerswil
Tel. 0041 (0)71 973 93 0
Fax 0041 (0)71 973 93 1
E-mail: knf2@knf.ch
www.knf.ch

Taiwan
KNF Neuberger Ltd.
9-2 FL., No., 24, Lane 123,
Section 6,
Ming Chuan East Road
Taipei City, Taiwan
Tel. 00886-2-2794-1011
Fax 00886-2-8792-1648
E-mail: knftwn@knftwn.com.tw
www.knftwn.com.tw

UK, Canada, South America
KNF Neuberger, Inc.
Two Black Forest Road
Trenton, New Jersey
08691-1810
Tel. 001 (609) 890-8600
Fax 001 (609) 890-8323
E-mail: knfusa@knf.com
www.knfusa.com
South America
Direct Phone: 001 609-649-1010
E-mail: gh@knf.com

Product centre for gas pumps:
Germany
KNF Neuberger GmbH
Alter Weg 3
D-79112 Freiburg
Phone 0049(0)7664 5909-0
Fax 0049(0)7664 5909-99
E-mail: info@knf.de
www.knf.de

Product centre for fluid pumps:
Switzerland
KNF FLOODOS AG
Wassereratte 2
CH-6210 Sursee
Phone 0041(0)41 925 00 25
Fax 0041(0)41 925 00 35
E-mail: info@knf-floodos.ch
www.knf-floodos.ch

Product centre for micro pumps:
Switzerland
KNF Micro AG
Ziegelmatte 1b
CH-6260 Reiden
Phone 0041(0)62 787 88 88
Fax 0041(0)62 787 88 99
E-mail: info@knf-micro.ch
www.knf-micro.ch

Product centre for micro pumps:
Switzerland
KNF Micro AG
Ziegelmatte 1b
CH-6260 Reiden
Phone 0041(0)62 787 88 88
Fax 0041(0)62 787 88 99
E-mail: info@knf-micro.ch
www.knf-micro.ch

KNF product centres

KNF product centres

Product centre for gas pumps:
Germany
KNF Neuberger GmbH
Alter Weg 3
D-79112 Freiburg
Phone 0049(0)7664 5909-0
Fax 0049(0)7664 5909-99
E-mail: info@knf.de
www.knf.de

Product centre for fluid pumps:
Switzerland
KNF FLOODOS AG
Wassereratte 2
CH-6210 Sursee
Phone 0041(0)41 925 00 25
Fax 0041(0)41 925 00 35
E-mail: info@knf-floodos.ch
www.knf-floodos.ch

Product centre for micro pumps:
Switzerland
KNF Micro AG
Ziegelmatte 1b
CH-6260 Reiden
Phone 0041(0)62 787 88 88
Fax 0041(0)62 787 88 99
E-mail: info@knf-micro.ch
www.knf-micro.ch