Allgemein

Halbleiterindustrie: Wenn nur sauber nicht sauber genug ist

Optimierte KNF Flüssigkeitspumpen für Canon Nanotechnologies, Inc.

Die Halbleiterindustrie schafft wahre Wunder der modernen Technik: mit Millionen von Transistoren auf unglaublich kleinem Raum sorgen Mikrochips für Rechenleistung und Speicher in unseren Smartphones, Tablets, Kühlschränken, Autos und vielem mehr. Da Halbleiter extrem klein sind, erfolgt ihre Herstellung in einer Nanogrößenordnung, was die Prozesse anfällig für äußere Einflüsse wie mikroskopisch kleine Schmutzpartikel oder Ionisierung macht. Aus diesem Grund hat sich Canon Nanotechnologies, Inc. für die Zusammenarbeit mit KNF entschieden. Gemeinsam wurden Flüssigkeitspumpen entwickelt, die auch diesen außergewöhnlichen Anforderungen gewachsen sind.

The high fluid management demands of the semiconductor industry

Within the world of microelectronics, Canon Nanotechnologies is a leading R&D company of cutting-edge nanotechnology for semiconductor manufacturing. During the process developed by Canon Nanotechnologies, arrays of small drops of fluid are placed onto silicon wafers. This process is similar to the conventional inkjet process, but on an extremely small scale. It also involves a fluid that not only needs to be extremely pure but must not be ionized under any circumstances. These demanding requirements necessitate the usage of highly specialized equipment. Here, a special focus lies on the fluid transfer pumps that transport the liquid within this process.

Searching for the ideal fluid transfer pump

As the fluid needs to be ultra-pure and must not be ionized, the materials of the pumps need to be chosen carefully. At the time, Canon was using centrifugal pumps made of PTFE. While KNF diaphragm pumps already represented a better alternative to the centrifugal pumps in terms of flow rate and gentleness, KNF also aimed at using an even cleaner and completely ion-free material. This was due to the fact that Canon Nanotechnologies had been tightening the requirements on ion contamination in recent years. After extensive research, the usage of a polymer called PCTFE was proposed. This material had never been used in KNF pumps before.

Introducing a new material to the industry

When KNF advised to make use of this new material, Canon Nanotechnologies agreed to rigorous testing. This was necessary as the benefits of using this polymer were great in theory but needed to be proven in the real world. Canon Nanotechnologies extensively tested a material sample sent by KNF. After putting the PCTFE sample to proof for several months, the superiority of the new polymer over the previously used PTFE became clear. With this result, the development process of the custom-made pumps advanced.

Modular design approach accelerates development process

With the entirely new material approved, KNF then very quickly provided a first prototype within six months. This rapid development process was only possible because of an elaborate modular design approach. While PCTFE was a completely new material to be used for fluid transfer pumps, the rest of the pump could be developed by combining pump components, like motors and valves, that had already been tested and used in other configurations. This not only reduced development time significantly but also resulted in a reliable pump for the semiconductor industry that consists of pre-tested and industry-proven components.

Ähnliche Artikel

75 Years: KNF Celebrates Company Anniversary

A treasure chest filled with memories, facts and stories. Learn more about KNF’s company history.

Anniversary Blog
Abonnieren Sie unseren Blog
Bleiben Sie auf dem Laufenden und erhalten Sie eine E-Mail-Benachrichtigung, sobald ein neuer Beitrag erscheint.
Hinweise zur Verarbeitung Ihrer persönlichen Daten finden Sie in unserer Datenschutzerklärung.
Mit KNF chatten